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Ensemble perceptionis a process by which we summarize complex scenes.
Despite the importance of ensemble perception to everyday cognition,
there are few computational models that provide a formal account

of this process. Here we develop and test a model in which ensemble
representations reflect the global sum of activation signals across all
individual items. We leverage this set of minimal assumptions to formally
connect amodel of memory for individual items to ensembles. We compare
our ensemble model against a set of alternative models in five experiments.
Our approach uses performance on a visual memory task for individual
items to generate zero-free-parameter predictions of interindividual

and intraindividual differences in performance on an ensemble
continuous-report task. Our top-down modelling approach formally
unifies models of memory for individual items and ensembles and opens
avenue for building and comparing models of distinct memory processes
and representations.

Human perception and cognition are grounded in a capacity-limited
system'™*. Abasic question across research areas in the behavioural sci-
encesis how people effectively represent an environment that should
far exceed their processing capabilities’. One widely accepted answer to
this questionis that perceptual and cognitive systems take advantage of
redundanciesinthe environment by forminga condensed summary or
gist® . Inthe visual domain, the ability of people to extract summaries
in this way is commonly referred to as ensemble perception’.

In a standard laboratory ensemble task, participants are shown
a set of stimuli that share properties in a specific feature dimension,
suchas colour,andareinstructed toreportontheir average along that
dimension. Figure 1 depicts two example ensemble tasks with colours
and shapes. People are remarkably accurate at these tasks and often
notably better at reporting the average of the set than at reporting on
anyindividualitem'. Extensive empirical and theoretical work suggests
thatensemble processing partially underlies our ability to create more
robust representations of simple scenes'®", categorize objects? and
guide our attention'. Such tasks may also lead to critical insights into
the limits of conscious perception. For example, preserved ensemble
information in the relative absence of information about individuals
is thought to show that ‘phenomenal’ consciousness overflows con-
scious access™”,

Given the fundamental role of ensemble processing, there is
immense value in developing process-based models that explain the
mechanisms of ensemble extraction. However, so far, mainstream
theories of ensemble extraction are largely grounded in verbal descrip-
tions’. A known limitation of verbal theories is that they may lack the
precision of mathematical models, which is requisite for delineating
hypothetical constructs and adjudicating between competing theo-
retical accounts'® ™,

The goal of the current work is to attempt to fill this gap. We pre-
sent a theoretical framework and quantitative models of ensemble
memory, and compare these models in different experiments to test
core process-based hypotheses of how ensembles are computed and
represented. We report consistent evidence for a Perceptual Summa-
tion model of ensemble memory. According to this model, stimuli
evoke distributed patterns of activity over feature values, and ensemble
representations reflect the global sum of these activations. We find
that this model captures a range of phenomena in the ensemble and
gist-memory literature.

A major aspect of our modelling framework is that rather than
deriving a ‘best fit’ to ensemble data alone, we instead formally link a
model of memory for individual items with ensembles. Accordingly,
we use our framework to predict performance in a wide range of
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Fig.1|Laboratory ensemble tasks. Examples of laboratory ensemble tasks in which participants are typically asked to report on the average along a stimulus

dimension, such as colour or shape, using a continuous reproduction task.

ensemble tasks, which differ in both stimuli and presentation format,
fromtasks thatinvolve processing of individual items. This modelling
thusinvolves generalizing across different cognitive tasks rather than
simply fitting the data of a particular task’*?2. The proposed model
also provides a high-precision account of human performance by
capturing complete distributions of errorsin continuous-report tasks.
Finally, this framework postulates probabilistic mental representa-
tions, making it broadly consistent with contemporary population
coding models of perceptionand cognition”. Next, we review relevant
theoretical work on ensemble perception, placing a special focus on
dichotomies that highlight core questions researchers may want a
model of ensemble processing to answer.

Existing theories of ensemble perception are foundational for
stimulating hypotheses of ensemble perception and memory®*. We
use these theories to outline three relevant dichotomies, which high-
light core desiderata for a quantitative process model of ensembles.

The first dichotomy is between views that ensemble process-
ing does versus does not involve operating over representations of
individual items®. This is a core dichotomy because it speaks to how
ensemble representations are computed. It also bears on the extent
to which ensembles are possible to compute when item information
is unavailable to memory, which is critical for theories about the role
of ensembles in consciousness™?>.

One class of views posit that ensemble processing involves pool-
ing over already-processed representations of individual items'®?¢ 25,
According to this view, people have complete representations of
individual items and pool them to compute anensemble. In contrast,
other views suggest that ensemble processing involves automatically
extracting an average without first representing each individual on
its own®%. Researchers have also proposed that ensemble extrac-
tion involves dividing the total amount of activation elicited by
perceived items by their number, without explicitly representing
individual items?.

Much of the work that seeks to address how representations of
individual items relate to ensembles is non-quantitative, which can
make the connection between individual and ensemble representa-
tions difficult to explain. For example, some researchers report that
representations of ensembles are present even when memory for
individual items is at chance, implying distinct representations for
both'®. However, these authors also report that pooling noisy informa-
tionaboutindividual items can predict ensemble data”. The question

of how representations of individual items relate to ensembles thus
remains animportant puzzle in the ensemble literature.

The second relevant dichotomy is between views that noise
accrues during an ‘early’ versus ‘late’ stage of ensemble process-
ing*’. We make two distinctions between possible types of early and
late noise in ensemble processing. The first is between perceptual
and post-perceptual noise—that is, noise that accrues during per-
ception without memory demands versus noise that accrues during
memory-based processes, such as active maintenance. The second
distinction is between presummarization and postsummarization
noise®, which is noise that accrues before versus after ensemble rep-
resentations are computed.

We distinguish between these two kinds of early and late noise
becauseitis conceptually possible, and s in fact anassumption of the
model we propose, that patterns of activation elicited by individual
items are corrupted by perceptual noise (consistent with early per-
ceptual noise accrual) but that post-perceptual noise accrues after
rather than before ensembles are computed (consistent with late
postsummarization noise accrual). This view entails that ensemble
computation operates over item representations that are corrupted
by perceptual but not post-perceptual noise. This contrasts to some
subsampling accounts, according to which only a few items are used
to create ensemble representations. Current subsampling models
are more aligned with the view that ensembles are computed after
post-perceptual noise accrues over representations of individualitems,
which are then used to compute an ensemble when memory is tested?.
Broadly, these dichotomies between variants of early and late theories
of noise provide insight into the time course of ensemble extraction.

Thelastrelevant dichotomyis between views that ensemble repre-
sentations are probabilistic versus point estimates. For instance, some
researchers examined the content of ensemble-like representations
in a visual search task®’. These authors reported evidence that people
are sensitive to the entire underlying (uniform or Gaussian) distribu-
tion of features in the external environment, rather than simply an
estimate of the average and variance of those features. This claim is
consistent with people storing entire probability distributions over
visual features, at leastin the kind of implicit tasks used in that work®.
This probabilistic representation view contrasts with an alternative
view that people represent a point estimate of the ensemble, such as
anaverage in feature space of eachindividual item'®*., This dichotomy
speaks to the richness of ‘summaries’ computed in ensemble tasks.
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Fig.2| TCCframework for memory of individual items and ensembles. a, The
TCC framework merges principles of memory uncertainty and the exponential
generalization gradient. On the left, the two Gaussian distributions represent the
distribution of familiarity signals for old (purple) and new (yellow/orange) items,
withincreasing values denoting greater familiarity. Purple, having been seen, on
average has higher familiarity, but onagiven trial people judge just one sample
from this distribution, such that sometimes, yellow/orange may feel more familiar.
Inline with signal detection theory, the distance between these distributions (d’)
quantifies memory fidelity. On the right, the psychophysical similarity function
shows how average familiarity scales as a function of psychophysical similarity to
the remembered item (for example, the purple at the centre of the distribution
has familiarity equal to d’, and the yellow and orange at the edges have familiarity
equalto zero).b, TCC allows us to link models for individual items and ensembles.
The left panel shows the TCC model for individual items, which postulates that
eachitemin the memory array elicits a distributed pattern of activation over
feature values (upper left), whichis corrupted by noise (centre left). When tested,
peoplereport on the feature value that generates the maximum memory signal
based on the probed item (lower left). The right panel shows the TCC Perceptual
Summation model for ensembles, which postulates that each item in the memory
array elicits adistributed pattern of activation over feature values, which are
pooled at an early encoding stage of processing (upper right). This distributed
pattern of activation is corrupted by noise (middle right), and when queried on the
mean colour, people report on the feature value that elicits the maximum memory
signalin this ensemble representation (lower right).

The current model posits that ensemble processing involves
pooling over individual item representations. It also postulates that
representations of individual items are corrupted by noise at an early
perceptual stage, but that post-perceptual noise accrues after ensem-
bles are computed. This aligns with the view that ensemble perception
is distinct from simply actively maintaining individual items in work-
ing memory and then summarizing them when ensemble memory
is probed. Finally, the model posits probabilistic representations,
accordingtowhich eachindividualitem as well as the ensembleis rep-
resented as a distribution of activity over the entire feature space. We
next describe the quantitative framework that serves as the conceptual
and mathematical basis for the current ensemble model.

We took a top-down strategy for developing a computational
model of ensemble processing®. We used an existing quantitative
framework of memory and carved out a set of plausible constraints
onthealgorithms that underlie ensemble perception and memory for
them. We formalized these constraints using a set of computational
models.

We conceived of the current ensemble model using the target
confusability competition (TCC) theory of memory®. Inaset of more
thanadozen experiments, TCC outperformed mainstream models of
visual memory in terms of both fit to data and ability to predict data
across distinct visual working and long-term memory tasks. The TCC
model combines two fundamentalideas shared by abroad range of cog-
nitive computational models (Fig. 2a), which are that memory-based
decisions are made under uncertainty*** and that information in the
worldis processed on the basis of its psychophysical rather than physi-
cal similarity structure®®*°,

Thefirst premise of TCCis that memory representations areintrin-
sically probabilistic and vary in strength, a core principle of signal
detection theory**"*? and, broadly, Bayesian models of cognition** ¢,
Forinstance,aremembereditemis assumed tobe neither completely
forgotten nor completely remembered. Instead, thereis a probability
distribution over how well the item is remembered, such that some-
times it is remembered with high fidelity and elicits a strong familiar-
ity signal, and other times it is remembered with lower fidelity and
elicits a weaker familiarity signal. In signal detection theory and TCC,
the strength of each memory’s familiarity signal is captured with the
signal-to-noise-ratio parameter, d’.

The second premise of TCC is that familiarity spreads across fea-
ture space according to the stimulus’s psychophysical properties, an
assumption shared with other foundational models of memory*~",
Specifically, the familiarity of agiven stimulusis a function of the psy-
chophysical similarity between this stimulus and contents of memory,
which can also be thought of as distributed patterns of activationin
neural populations that are selective to remembered feature values®>*,
Thisassumption entails that stimuli will elicit a stronger familiarity sig-
nalifthey are more psychophysically similar to contents in memory. For
instance, iftheremembered itemis a purple square, the colour purple
willelicita very strong familiarity signal, as will colours that are nearly
perceptually indistinguishable from purple. Colours that are somewhat
similar to purple, such as magenta, will also elicit a familiarity signal,
which will be stronger than those elicited by relatively dissimilar col-
ours, suchasgreen. This latent psychophysical similarity function and
the corresponding distribution of memory signals is approximately
exponential in form, in line with previous theories of memory and
generalization® %+,

To summarize, TCC is a model that formally combines two fun-
damental views about memory processes in a way that permits gen-
eralization across memory tasks with a single free parameter, d’. The
generalizability and parsimony of TCC, as well as its basis on probabil-
isticmodels of cognition and psychophysical scaling, make it a power-
ful framework for building cognitive architectures. We used TCC to
derive the Perceptual Summation model as well as a set of contending
models, with which we tested hypotheses of how ensembles are com-
puted and represented. We also derived and tested aset of alternative,
non-TCC-based models that make different processing assumptions.
Next, we describe the TCC working-memory model for individual items
and explain how we extended it to models of ensemble memory and
formally linked these models.

Figure 2b (left) shows a schematic of a typical trial in a visual work-
ingmemory task for individual items, which requires memorizing three
coloured circles and their spatial locations. The TCC model postulates
that each item elicits some location-dependent pattern of activity,
which causes an increase in familiarity for its respective colour but
also for similar colours. These levels of activation are each corrupted
by perceptual noise, which makes it more difficult to distinguish highly
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Fig.3| TCC ensemble models. Schematic of all ensemble models that fall within
the TCC framework. Within the TCC framework, all ensemble models posit
thatactivations of individual memory representations, quantified with the
signal-to-noise ratio (d’), underlie ensemble memory processes. Accordingly,
each model canbe used to predict ensemble data with zero free parameters
by independently estimating a signal-to-noise ratio from a working memory
task and substituting it into the ensemble models. Each model provides away
of linking memory for individual items to memory for ensembles, but each
embodies different theoretical assumptions regarding how ensembles are
computed. The Perceptual Summation model postulates that each item elicits
item-specific patterns of activation that are pooled at an early encoding stage
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of processing. This model has the potential to capture key predictions in the
ensemble memory literature, such as that ensemble representations are more
robust than representations of individual items, but that item-specific memory
canstill predict aspects of ensemble memory. The Post-perceptual Summation
model, in contrast, captures the view that representations of individual items are
maintained in working memory until memory is probed. Finally, the Automatic
Averaging model postulates that ensemble representations of the average are
extracted automatically rather than being built up from representations of
individual items. Together, comparing these models allows us to formally test key
predictions in the ensemble literature using formal model comparison as well as
aprincipled, theoretical framework of memory processes.

similar feature values from one another. Throughout our modelling, we
assumed that perceptual noise affectsindividual item activationsin the
same way in both working memory and ensemble tasks (see Methods
for how perceptual noise was measured and modelled).

After individual item representations are perceived, their pat-
tern of activity is corrupted by attention-based and memory-based
noise. These effects of post-perceptual noise are captured with asingle
free parameter, d’, which quantifies the signal-to-noise ratio of each
individual representation. The signal-to-noise ratio is affected by key
experimental variables, such as memory load, encoding time and the
retentioninterval, each of which affects how well the items are initially
encoded and how much noise accumulates during memory mainte-
nance. At the end of the trial, the probed item’s location is queried,
and the participants report on the colour channel that generates the
maximum familiarity signal.

Formally, the TCC model for individual items is given by the fol-
lowing equation:

riywm = argmax (f(x)id/ + Unoise) . @

The index i denotes the probed item, r;ywy is the predicted
response on the continuous-report visual working memory task for
thatitem, f(x) is the measured similarity of each colour x with respect
toitemi, g, is a fixed amount of post-perceptual noise (set to one
standard deviation with no loss in generality) and argmax denotes

the decision rule that memory reports are based on the feature that
generates the maximum familiarity signal.

We developed the Perceptual Summation ensemble model from
the TCC model for individual items, as well as constraints based on
prior evidence from the ensemble literature. These constraintsinclude
seemingly contradictory evidence that memory for individual items
can predict memory for ensembles, but that memory for ensembles
is more robust than memory for individual items™.

Like the model for individual items, the Perceptual Summation
model postulates that each item in the memory array elicits patterns
of activity over feature values, each of which is corrupted by percep-
tual noise (Fig. 2b, right). However, the Perceptual Summation model
postulates that the ensemble is extracted during encoding, before
memory-based noise accrues over representations of individual items.
The model thus postulates that memory-based noise accumulates
over the ensemble instead of over representations of each itemin the
array. When probed on the average, participants report on the colour
channel that generates the maximum familiarity signal. The equation
for the Perceptual Summation model is the following;:

N
Iens = argmax ((Zf(x),-d’) + 0noise>~ ()
i=1

Note that equations (1) and (2) are nearly identical, except that
self-reports on the visual working memory task (r,yw\) are determined
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by levels of activation elicited by a single probed item (i), whereas
self-reports onthe ensemble task (ry\s) are determined by the summed
levels of activation of all Nitems.

With this framework, we connected the models for individual
items and ensembles. We postulated that the patterns of activation
elicited by eachiteminthe memory array are the same inboth work-
ing memory and ensemble tasks, and are pooled via summation in
the early perceptual stage of ensemble extraction. Like in the model
for individual items, this pattern of activation is measured with a
psychophysical similarity function (which captures how familiarity
signals are distributed across feature values for each item) and a
single free parameter @’ (which measures the signal-to-noise ratio
that scales these patterns of activation on the basis of the demands
of the memory task). We formally linked memory for individual items
and ensembles by estimating the signal-to-noise ratio (d’) of each
individual item from a visual working memory task for individual
items, and substituting this signal-to-noise ratio into the Perceptual
Summation model to compute the predicted summed pattern of
activation of the ensemble. With this approach, we predicted entire
distributions of memory errorsin continuous-report ensemble tasks
with zero free parameters.

To summarize, the difference between representations of indi-
vidualitems and ensembles is that in ensemble tasks patterns of acti-
vation elicited by individual items are pooled via summation before
post-perceptual noise accrual. This entails that the signal-to-noise
ratio of the post-summation ensemble representation will be larger
thanitis for individual items when there is overlap in feature values
or redundancies between items in the ensemble array. Through the
lens of likelihood signal detection theory*, this pooling mechanism
can be seen as an optimal way of combining the likelihood elicited by
eachitemintoamore robust ensemble memory representation, or gist,
asopposed to treating the evidence elicited by each item separately.

The Perceptual Summation model’s pooling mechanism can be
seen asacognitive-level approximation of processes described in neu-
ral population coding models. Very generally, some evidence suggests
thatincreased population size may increase the amount of information
embedded in populations of neurons®. Although the relationship
between population size and readout accuracy is extremely complex
and an active topic of investigation®*~’, this framework provides one
neurally plausible instantiation for the computations postulated in the
Perceptual Summation model.

To test the predictions of the Perceptual Summation model, we
compared it with a set of alternative models. The first prediction we
consideredisthe time course of ensemble extraction. The Perceptual

Summation model’s ‘early pooling’ prediction contrasts withan alter-
native view that individual items are held in working memory until
ensemble memory is probed, at which point they are pooled to com-
pute an ensemble. This alternative view is informally embodied in
some subsampling theories of ensemble processing. We formalized
this prediction within the TCC framework with the Post-perceptual
Summation model.

The Post-perceptual Summation model predicts that peo-
ple maintain location-dependent representations of each item in
memory—as they would in a standard working memory task for indi-
vidual items—until they are probed on their memory for the ensem-
ble. Thus, according to this model, ensemble representations are
computed at a relatively late stage, and each item therefore accrues
memory-based noise separately, before the ensemble is pooled. The
equation for the Post-perceptual Summation modelis the following;:

N
rens = argmax ( Y (foo,d + onoise)) : 3)
i=1

Note that the terms in the Post-perceptual (equation (3)) and
Perceptual Summation (equation (2)) models are nearly identical, with
the difference that summation occurs over individual items that have
already accrued post-perceptual noise (equation (3)) versus before
representations of individual items have accrued post-perceptual noise
(equation (2)). Tosummarize, these two models can mimic each other
ifd’isallowed to freely vary; however, because we use a generalization
approach, @’ is constrained across tasks, allowing us to differentiate
these models (see Supplementary Information for extended discus-
sion of these issues).

Finally, we considered an ensemble model that follows from the-
ories that ensemble averages are extracted automatically, without
processing of individual items®*, which we refer to as the Automatic
Averaging model. Although still nested within the TCC framework,
this model differs from the Perceptual and Post-perceptual Summa-
tion models because it postulates that individual items in ensemble
tasks automatically elicit distributed patterns of activation around
the average feature value in ensemble array, rather than eliciting
item-specific patterns of activation that are pooled via summation.
This representation of the average is also probabilistic and scaled by
the signal-to-noise ratio of a single memory representation. We also
consider alternative assumptions about the signal-to-noise ratio for
this model in the Supplementary Information. To summarize, this
model is equivalent to assuming that the ‘average’ is directly percep-
tually available to people in the same way as an item that is physically
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Fig. 5| Colour, shape and sequential memory tasks. a,b, Example trial
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with colour (a) and shape (b). In the visual working memory tasks (left), the
participants saw a set of colours (a) or shapes (b); then, after adelay, asingle
location was probed, and the participants had to indicate which colour or
shape was in that position. In the ensemble tasks (right), the participants saw a
set of colours (a) or shapes (b) and then after a delay were probed on the mean
colour or mean shape (for example, asummary of the entire set) rather than on
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asingleindividual item. ¢, An example trial sequence used in the visual working
memory and ensemble tasks in Experiment 5. On each trial of the visual working
memory task (left), the participants saw anumber of coloured real-world objects
presented one atatime. Then, asingle object appeared at testin greyscale, and
the participants had to indicate what colour that particularitem had been. In the
ensemble task (right), the participants saw a sequence of colours on a single real-
world object, and at test they had to indicate the average colour of this object (ISI
denotes ‘interstimulus interval’).

present. As shown in equation (4), this model postulates that people
extractasingle probability distribution over the mean feature, which
isalso corrupted by noise:

rens = argmax (fX) eand + Onoise) - 4)

Notethat equation (4) is nearlyidentical to equation (1) except that
the similarity functionis centred on the average feature value instead
of the value of an individual item. Figure 3 depicts each of these TCC
ensemble models.

Sofar, these ensemble models posit that, on average, each itemis
weighted equally when computing anensemble. Thisis tenable under
conditions that do not lead to disproportionate prioritization of a
specificitem or subset of items®*’,

However, it is known that some conditions do elicit unequal
weighting of items in memory. For instance, items that were shown
more recently tend to be remembered better than items shown less
recently, and such recency effects affect ensemble representations as
well®?. To evaluate the generalizability of our modelling, we extended it
to conditionsin whichitemsreceive unequal prioritizationin memory.
Furthermore, the summation account becomes more distinct from
other possible accounts when items vary in strength; therefore, this
analysis also provides a stronger test of the view that ensemble rep-
resentations reflect a sum of local patterns of activation. Finally, this
analysis helps demonstrate that we can predict both interindividual
and intraindividual variations in ensemble processing.

To thisend, in one of our experiments we used a sequential pres-
entation ensemble paradigm. One way to generalize the TCC-based
models to this situation is to simply obtain separate d’ estimates for
eachiteminthe sequence and use these estimates to compute ensem-
ble predictions. However, we can also use a temporal model that cap-
tures memory changes as a function of the sequential presentation
with fewer parameters. We used prior modelling work®* to extend
our modelling in this way (Methods). As expected, we found the same
pattern of results using both types of models. Next, we describe a few
alternative, non-TCC models of ensemble perception.

Currently, there are no computational models of ensemble
processing that fully capture distributions of errors in a continuous
self-reporttask and that canaccount for dataacross arange of ensem-
ble manipulations. However, to bolster the interpretability of our
modelling, we derived a set of alternative models that serve as con-
ceptual foils to the TCC ensemble models. Some of these models are
baseline models that make extremely simplistic assumptions about
ensemble processing, which we use to check the tenability of our TCC
models. Other models link memory performance for individual items
to memory for ensembles while postulating different assumptions
aboutmemory processes, suchas that there are true ‘guessing states™’.
Each ofthese modelsis depicted schematically in Fig. 4. Because we did
not find that these are best-performing models, for ease of exposition,
weinclude a conceptual description of these models in the Methods.

We ran five experiments to evaluate the predictive accuracy of
each ensemble model, with the goal of assessing the generalizability of
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Fig. 6| Comparisonin predictive accuracy between the Perceptual
Summation model and competing models of ensemble memory for colour
with set size manipulation. Top, violin plots based on the difference in PNLL
scores between each of the six alternative competing models (PNLL,,) and

the main Perceptual Summation model (PNLLys,) for Experiment1(n =50
participants). Lower PNLL values indicate higher predictive accuracy; therefore,
PNLL difference scores higher (or lower) than zero indicate support for the

Perceptual Summation (or acompeting) model. In both experiments, the vast
majority of participants were better predicted by the Perceptual Summation
model than by any of the alternatives. Bottom, descriptive and inferential
statistics from all comparisons in Experiment 1, including the mean and standard
error of the mean across participants. The PNLL values were compared with a
paired two-tailed ¢-test, corrected for multiple comparisons, and all Pvalues were
statistically significant (P < 0.001).

our modelling results across different ensemble tasks. As previewed,
each experiment had the same structure, meaning that the partici-
pants completed one block of a visual working memory task and
one block of an ensemble task (presented in random order across
participants). This allowed us to measure d’ in the visual working
memory task and use it to predict performance in the ensemble task.
In Experiments 1 and 2, we examined people’s memory for colour
(Fig.5a) and manipulated set size and the range of colour valuesin the
ensemble task, respectively. In Experiments 3 and 4, we evaluated the
generalizability of these results for a higher-level shape feature space
(Fig. 5b), where we also manipulated set size and varied the range of
shapes, respectively. Finally, in Experiment 5, we used a sequential
presentation task (Fig. 5c) to test models when memory representa-
tions receive different priority.

Results

Our goal wasto evaluate the ability of the Perceptual Summationensem-
ble model to generalize performance from the visual working mem-
ory task to the ensemble task. We formally compared the predictive
accuracy of this model with that of other models using the predicted
negative loglikelihood (PNLL) between it and the contending models.
PNLL is a predictive model comparison metric because we assess the
models on the basis of their capacity to generalize across tasks—that
is, make zero-free-parameter predictions on new data in a different
task. However, we do note that all TCC models also yield good fit to
the data (R*> 0.9 across all experiments; Supplementary Informa-
tion). Because PNLL is a negative log likelihood, lower scores reflect
less deviance and better model predictions. PNLL naturally accounts
for model complexity because it captures predictive accuracy rather

than goodness of fit (for an elaborated discussion of this point, see the
Supplementary Information).

For our main analysis with TCC ensemble models, we fit the TCC
visual working memory model to the data and substituted @’ estimates
from these fits into the ensemble models to predict the ensemble
data. To ensure the robustness of our models’ performance, we also
implemented areverse inference analysisin which we fit the ensemble
modelsto the ensemble data and then used the best-fitting parameters
from the ensemble task to predict the working memory data (Sup-
plementary Information). We found that our results are robust across
these different methods of prediction.

We implemented analyses at the level of individual participants.
Specifically, we compared the observed PNLL between eachmodel and
the best-performing model using a paired t-test. The data distribution
was assumed to be normal, but this was not formally tested. We report
the observed effect size (d,) and the lower and upper bounds of a con-
fidenceinterval for the meandifference (CI, and Cl, respectively). We
used a conservative Bonferroni correction® to control for multiple
comparisons. For our main comparisonsin Experiments1-4 and Experi-
ment 5, there were six and eight family-wise comparisons (m), respec-
tively, and the adjusted significance threshold (a, = a/m = 0.05/m)
was 0.008 and 0.006, respectively. For our reverse inference compari-
sons, there were two family-wise comparisonsin each experiment, and
a,=0.025. We found that each central comparison was statistically
significant when adjusting for multiple comparisons.

Ensemble memory for colour with different set sizes
InExperiment 1, the participants completed a visual working memory
and ensemble task that used colour as the stimulus and manipulated
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Fig.7| The Perceptual Summation model predicts ensemble memory for
colour with set size manipulation. a,b, Graphical representations of the

TCC models’ fit and prediction of the data in Experiment 1. In this experiment,
the participants had to remember the colours of simultaneously presented
circles, and the number of colours was manipulated in the working memory and
ensemble tasks. Panel a shows the fits of the TCC model for individual items to
aggregate data from the visual working memory task for six and eight items.
Estimates of @’ from the visual working memory task were substituted into

the TCC Perceptual Summation (blue), Post-perceptual (red) and Automatic
Averaging (green) models to predict the ensemble data. Panel b shows model
predictions for afew example participants (P1through P4). We visually show the
fits of the TCC model for individual items to the visual working memory data to
demonstrate that it provides a reasonable fit to the data (for an extended model
comparison between this model and other contending models for individual
items based on fitand predictive accuracy, see Schurgin et al.>).

set size to assess how each model captures changes as a function of
memory load. We found that the Perceptual Summation model was the
best-performing model (the PNLL of the Perceptual Summation model
was statistically lower than for all alternative models; all P < 0.001).
Figure 6 shows the difference in PNLL between the Perceptual Sum-
mationand competing models, along with descriptive and inferential
statistics. Figure 7 shows the fits of the TCC models to aggregate and
exampleindividual data.

Ensemble memory for colour with different ranges

In Experiment 2, the participants performed a colour task, and we
manipulated the range of the colours in the ensemble task—that is,
how distinct they were from each other. We found that the Percep-
tual Summation model was the best-performing model (the PNLL
of the Perceptual Summation model was statistically lower than

for all alternative models; all P < 0.001). Figure 8 shows the differ-
ence in PNLL between the Perceptual Summation and competing
models, along with descriptive and inferential statistics. Extended
Data Fig. 1 shows the fits of the TCC models to the aggregate and
individual data.

Ensemble memory for shapes with different set sizes

In Experiment 3, we manipulated set size and had the participants
remember shapes instead of colours. We found that the Perceptual
Summation model was the best-performing model (the PNLL of the
Perceptual Summation model was statistically lower than for all alterna-
tive models; all P< 0.001). Extended Data Fig. 2 shows the difference
in PNLL between the Perceptual Summation and competing models,
as well as fit statistics. Extended Data Fig. 3 shows the fits of the TCC
models to the aggregate and individual data.
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Fig. 8| Comparisonin predictive accuracy between the Perceptual
Summation model and competing models of ensemble memory for colour
with colour range manipulation. Top, violin plots based on the differencein
PNLL scores between each of the six alternative competing models (PNLL,,) and
the main Perceptual Summation model (PNLLs,) for Experiment 2 (n =50
participants). Lower PNLL values indicate higher predictive accuracy; therefore,
PNLL difference scores higher (or lower) than zero indicate support for the

Perceptual Summation (or acompeting) model. In both experiments, the vast
majority of participants were better predicted by the Perceptual Summation
model than by any of the alternatives. Bottom, descriptive and inferential
statistics from all comparisons in Experiment 2, including the mean and standard
error of the mean across participants. The PNLL values were compared with a
paired two-tailed ¢-test, corrected for multiple comparisons, and all Pvalues were
statistically significant (P < 0.001).

Ensemble memory for shapes with different ranges

In Experiment 4, we manipulated the range of shapes in the ensem-
ble task. We found that the Perceptual Summation model was the
best-performing model (the PNLL of the Perceptual Summation model
was statistically lower than for all alternative models; all P < 0.001).
Extended Data Fig. 4 shows the difference in PNLL between the Per-
ceptual Summation and competing models, along with descriptive
andinferential statistics. Extended Data Fig. 5 shows the fits of the TCC
models to the aggregate and individual data.

Ensemble memory for sequentially presented stimuli

In Experiment 5, we presented stimuli sequentially, introducing varia-
tioninthestrength of the items. We found that the Recency Perceptual
Summation model was the best-performing model (the PNLL of the
Perceptual Summation model was statistically lower than for each of the
competing models; all P < 0.001). As expected, thismodel performed
comparably toamodel where we measured aseparate d’ for eachitem
inthe sequence. Extended DataFig. 6 shows the differencein PNLL and
statistical comparisons. Extended Data Fig. 7 shows the fits of the TCC
models to the aggregate and individual data.

Discussion

Across five experiments, we found support for a Perceptual Summation
ensemble model that postulates that ensemble representations are a
sum of activations elicited by individual items in the memory array,
whicharepooled at arelatively early encoding stage of processing. We
used the TCC framework to formally link aworking memory model for
individualitems with this ensemble model. The Perceptual Summation
modelyields zero-free-parameter predictions of the full distribution of
errors in ensemble tasks, using parameters obtained from a matched

visual working memory task for individual items. Itis ageneral process
model of ensembles, developed on the basis of an existing theory of
memory forindividual items to make predictions for any ensemble task.
Our modelling demonstrates thatit can make predictions for ensemble
tasks that use different stimuli spaces and presentation formats. Inthe
Supplementary Information, we report simulations that demonstrate
how the model can be extended to other tasks.

We compared our Perceptual Summation model of ensembles
to a suite of contending models to adjudicate between competing
hypotheses regarding how ensembles are extracted. The first critical
comparison is between the Perceptual and Post-perceptual Summa-
tion models, which provides insight into the time course of ensemble
extraction. The Perceptual Summation model entails that people pool
overindividual item representationsrelatively early at the perceptual/
encodingstage of ensemble extraction. In contrast, the Post-perceptual
Summation model entails that people pool at alater processing stage,
afterindividualitems are encoded and consolidated in working mem-
ory”*, We found that the Perceptual Summation model outperformed
the Post-perceptual Summation model, indicating that ensemble
processinginthese settingsis more akin to a perceptual process rather
thanacomplexdeliberate process, in which people calculate apooled
representation using individual memory representations when their
ensemble memory is probed.

Second, we found that the Perceptual Summation model outper-
formed the Automatic Averaging model. The Automatic Averaging
model aligns with prior proposals® that people extract an average
without maintaining representations of individual items; it serves
as a logical foil to the Perceptual and Post-perceptual Summation
models, which both predict that ensembles are constructed fromrep-
resentations of individual items. Across all studies, we found that the
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Perceptual Summation model outperformed the Automatic Averaging
model, suggesting that people use representations of individual items
to extractensembles rather than automatically extracting an average.

We also compared the Perceptual Summation model with four
non-TCC models, which elucidates how to characterize ensemble
representations. We found that the fully probabilistic TCC models
outperform point estimate and partial distribution models. We clarify
here that when we refer to representations as ‘probabilistic’ we do not
assume that they must conform to classic probability axioms®*. Rather,
we assume that memory representations preserve uncertainty infor-
mation for the full distribution of feature values and that performance
inmemory tasks reflects areadout of these uncertainties over feature
values. These results are broadly consistent with neural population
coding models of memory, according to which memory representa-
tionsare grounded in distributed neural patterns of activation across
feature values®>*>%,

We conclude this section by noting that, like in allmodel compari-
sons, our inferences are qualified by the set of models we consider. For
instance, we donot make the strong claimthat there are no alternative
Automatic Averaging or Point Estimate models that could provide
abetter account of the data in principle. Our goal was to develop a
broad range of alternative models within and outside of the TCC frame-
work, withvarying assumptions, and implement themas fairly toeach
theoretical positionas possible. Inthe Supplementary Information, we
discuss how our model connects to and differs from existing models of
ensemble processing. We anticipate that future modelling work may
provide a new suite of alternatives. We believe it is critical that such
work focuses on developing models that can account for performance
across arange of ensemble tasks, have the potential to generalize across
task structures, and make high-precision predictions of performance.

The Perceptual Summation model hasrelevance for theories of gist
memory. Gist memory is broadly defined as memory for ‘generalities’
across multiple items, as opposed to memory for individual items,
and, as such, both gist and ensemble processes involve abstracting
regularities from multiple items**”. Our model of ensembles can-
not speak to how memory for gist and memory for individual items
interact during short-term or long-term memory retrieval. However,
it provides a candidate explanation for how gist memory representa-
tions are computed. According to this model, the bottleneck during
the encoding of individual items is the same across visual working
memory tasks for individual items and the extraction of apooled repre-
sentation. Furthermore, the model proposes that memory-based noise
accrues in the same way regardless of whether people are instructed
toremember asingleitem or anensemble. Critically, it postulates that
representations are pooled at arelatively early processing stage, prior
to post-perceptual noise accrual. Altogether, the Perceptual Summa-
tion model provides a parsimonious and precise account of how gist
representations may arise from representations of individual items,
while still being more robust than representations of individual items.

This model also provides an unambiguous account of how the
processing of individual items differs from the processing of gist®®.
Thatis, instead of using theoretically underspecified constructs®’ (such
as focused versus diffuse attention®*’° or preattentive and attentive
modes of processing’’?), it describes how different computations over
the same representations can give rise to distinct types of memories.
Webelieve that such anapproach has great promise for building precise
and testable models of gist memory, hierarchical representations and
reconstructive memory processes in the visual domain.

We conclude by discussing a few potential limitations and venues
for futureresearch. Inthe current modelling approach, we use asingle
parameter, d’,to measure a potentially diverse set of processes. Inline
with standard signal detection models, @’ quantifies the signal-to-noise
ratio of each memory representation, and different processes at encod-
ing, maintenance and retrieval are built into this measure. However,
signal-detection-based accounts are fully compatible with the view

that processes and memory representations are multidimensional®.
Our measure of memory with d’ simply captures how people combine
multidimensional processes and memory representations into asingle
decision variable, which they use to make memory judgements when
their memory is probed”. Naturally, this measure can be comple-
mented with other modelling frameworks that unpack these processes.
Weelaborate and clarify related aspects of signal detection theory, TCC
and our generalization approach in the Supplementary Information.

Another limitation is that we did not model all possible phenom-
enainthe ensembleliterature. Thisis because our goal was to formally
establish alink between two different processing models, and, to this
end, wefocused on aset of mainstream ensemble tasks where the pat-
terns of effects are robust. Inthe Supplementary Information, we report
simulations to demonstrate that our model can, in principle, capture
both outlier discounting and increased weighting of outliers. We also
report simulations to show how the model accounts for differential
effects of set size on the fidelity of ensemble representations and for
the effects of various distributions of stimuliin the ensemble array. Our
overall aim s to lay out a theoretical and methodological framework
for future modelling research of ensemble and gist memory.

Methods

The study was completed online through the university’s SONA sys-
tem and approved by the Institutional Review Board (IRB approval
code:151663; expiration1January 2023). All participants were at least
18 years old, provided informed consent and reported normal or
corrected-to-normal vision. The participants were from the Univer-
sity of California, San Diego, community and participated in exchange
for course credit. The participants were blind to the hypotheses of the
study. Ineach experiment, we collected datauntil our final sample size
was n =50, which affords 99% power for amedium effect size (d,=0.5)
for a paired t-test at a = 0.05. We did not analyse the data of partici-
pants who failed to complete the study. We also excluded data from
participantsif their d’ estimates in any of the visual working memory
task conditions (and for the last item in the sequential presentation
task) were more than 1.5 standard deviations below the group mean.
Alldataand code are available inthe Open Science Framework reposi-
tory (osf.io/mt29p/).

Experiment 1: memory for colour with manipulation of set size
The participants completed a block of a visual working memory task
and an ensemble task (the order of blocks was randomized across
participants). At the beginning of every trial in both the visual working
memory and ensemble tasks, the participants were shown a written
promptwiththe current trial number and the total number of trialsin
that block (1,000 ms). After the prompt offset, the participants were
shown afixation crossinthe centre of the screen and six placeholders
(1,000 ms). Next, the participants were briefly presented with the
memory array (350 ms). We manipulated memory load (randomly
across trials) in the visual working memory and ensemble tasks; thus,
the participants were instructed to remember six (50% of trials) or eight
items in both tasks. The colour of each circle was randomly sampled
from the CIELAB colour space of Schurgin et al.** with the constraint
that each colour had to be at least 30° away from the other colours in
thearray. Inthe ensemble block, thememory array also consisted either
of six (50% of trials) or eight coloured circles. The step size between
colours in the ensemble task was fixed to 15° for both set sizes. There
were 150 trials in the visual working memory block and 150 trials in
the ensemble block (75 trials per memory load condition in each of
the tasks).

The memory array in both blocks was followed by a retention
interval (900 ms) and the memory probe. In the visual working memory
task, the participants were shown a black outline around one of the
placeholders, which cued them to report on the colour of the circle
shown in that spatial location. In the ensemble task, the participants
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were instructed to report on the average colour. In both tasks, the
participants reported on the colour using a colour wheel.

Experiment 2: memory for colour with manipulation of range
inthe ensemble task

The procedure of Experiment 2 wasidentical to the procedure of Experi-
ment1with the following exceptions. First, in both the visual working
memory and ensemble memory blocks, the memory array always con-
sisted of six coloured circles. Second, in the ensemble task, the step size
between coloursineach condition was constrained tobe 10° (60° range
condition), 15° (90° range condition) or 20° (120° range condition).
There were 75 trials of the visual working memory task and 225 trials
of the ensemble task (75 trials in each of the three range conditions).

Experiment 3: memory for shape with manipulation of set size
Experiment 3 was identical to Experiment 1, except that the participants
were shown shapes instead of colours, and we changed the encoding
time to 1,000 ms and the retention interval to 800 ms because the
shape task is more difficult than the colour task. The shape stimuli
were taken from Lietal.™.

Experiment 4: memory for shape with manipulation of range
inthe ensemble task

Experiment 4 was identical to Experiment 2, except that the partici-
pants were shownshapesinstead of colours, and we changed the encod-
ingtime to 1,000 ms and the retention interval to 800 ms.

Experiment 5: memory for sequentially presented colours

The goal of Experiment 5 was to model data from a sequential instead
of simultaneous presentation paradigm. Therefore, in this experiment
the participants were instructed to remember the colours of coloured
pictures of real-world objects*’. We used pictures of real-world objects
instead of uniform stimuli (for example, circles) because this allowed
us to easily probe an item’s serial position in the sequential visual
working memory task for individual items by showing the participants
agreyscale photo of one of the objects in the sequence and probing
them on that object’s colour.

As before, all participants completed a block of the visual work-
ing memory and ensemble tasks. In both tasks, the participants
self-advanced each trial by mouse-clicking on a fixation cross in the
centre of the screen. The mouse-click was followed by a brief delay
(1,000 ms), after which they were shown a sequence of six objects,
each presented one atatimein the centre of the computer screen. In
both tasks, each object was presented for 600 ms and followed by a
450 msinterstimulusinterval. In the visual working memory task, on
each trial, each object in the sequence was unique, and the colour of
each object was constrained to be at least 30° away from the colours
of the remaining objects. In the ensemble task, on each trial, each
object in the sequence was the same (though different objects were
presented across trials), and the step size between colours was 20°.
To measure the effects of recency in the ensemble task, we adapted
amanipulation from prior work®. Specifically, on half of the trials,
the first (or last) three objects in the sequence had colours that were
counterclockwise from the mean colour, whereas the last (or first)
three objects had colours that were clockwise from the mean colour
incolour space.

In both tasks, the last object in the sequence was followed by a
900 ms delay. Within the delay period, the participants were shown
a dynamic visual mask, which was displayed for 100 ms, 100 ms after
the last object offset. The mask was used to reduce potential effects
of iconic memory on recency effects in the sequential presentation
design. After the retention interval, the participants were probed on
theirmemory withacontinuous report. In the visual working memory
task, the participants were shown a greyscale version of one of the
six objects in the sequence and instructed to adjust its colour to its

colour onthattrial. In the ensemble task, the participants were shown
agreyscale version of the object from that trial and instructed to adjust
its colour to the average colour on that trial. There were 120 trials in
the visual working memory task, and each object in the sequence was
probed equiprobably (on 20 trials) across the experimental block.
There were 96 trials in the ensemble task, with 48 trials each in the
counterclockwise and clockwise conditions.

Generating predictions from TCC ensemble models

The models were fit separately to each participant’s visual working
trial-level memory data. The best-fitting parameter estimates from
these fits were used to predict the same person’s data on the ensem-
ble task. In Experiments 1-4, we fit the standard TCC model for single
items to the visual working memory data. The formula for this modelis
giveninequation (1). After obtaining a d’ estimate from fitting models
to the visual working memory data, we substituted this parameter
into equations (2)-(4) of the Perceptual and Post-perceptual Summa-
tion and Automatic Averaging models to predict the ensemble data.
Note that each equation includes information about the similarity
gradient with respect to each item in the ensemble memory array.
Therefore, for instance, in experiments where we manipulated the
range of colours or shapes, the range of activations elicited by items
inthe memory array is captured by summing these patterns of activa-
tionsinthe model (ifan array hasitems thatare further apartinfeature
space, this will also spread out the pooled activation function of the
ensemble). In Experiment 5, we fit the sequential version of the visual
working memory model (equation (5)) and substituted both the d’ and
rate parametersinto equations (6) and (7) to predict the ensemble data
using the Recency variants of the Perceptual and Post-perceptual Sum-
mation models for ensembles, respectively. As noted, the Automatic
Averaging model postulates that people extract asingle representation
of the mean without building it up from representations of individual
items; therefore, for this model we used only a single @’ estimate to
make predictions.

Generating predictions from non-TCC ensemble models

The first alternative non-TCC ensemble model is the Noise-Free Point
Estimate model, according to which people automatically extract a
noise-free point estimate of the mean feature, which is corrupted by
motor noise only. In other words, the Noise-Free Point Estimate model
simply predicts that self-reports on the ensemble task are the true
mean. Thismodelis unlikely to perform well since it cannot capture the
full distribution of errors in a delayed estimation task, but we include
it because it serves as a logical reference point against which to com-
pare the assumptions of TCC ensemble models (such as that ensemble
representations are probabilistic).

Togenerate predictions from the Noise-Free Point Estimate model,
we calculated an equally weighted average value of the ensemble (like
in the Automatic Averaging model). We then added a small amount of
jitter to this estimate to simulate small effects of motor noise. To simu-
late motor noise, we used the built-inrandn functionin MATLAB, which
generates random samples from a standard Gaussian distribution.

The second non-TCC model is the Noisy Point Estimate model,
amore plausible extension of the Noise-Free Point Estimate model.
Accordingto this model, people automatically extract a point estimate
of the mean feature along with an uncertainty interval around this
value. More precisely, we make the simplifying assumption that people
represent a fixed uniform uncertainty interval around the true mean
value®*. This model provides a simple way of capturing the idea that
peoplerepresent anoisy representation of the ensemble. To generate
predictions from the Noisy Point Estimate model, we drew random
samples of data from a uniform distribution, which had arange of 60°
and was centred on the true value of the average—that s, the samples
were drawn from—-30°to 30° around the mean value. The assumption
behind this model is that people represent a uniform uncertainty
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interval around the true mean value; thus, the number of samples was
based on the number of trials in each ensemble condition.

Sofar, neither of the first two Point Estimate models formally links
memory forindividual items to memory for ensembles. We therefore
considered two additional models, which dolink processing across the
working memory and ensemble tasks and make more tenable assump-
tions about processing on ensemble tasks. The first of these models
we refer to as the Average Item Point Estimate model, according to
which people compute ensembles by averaging over point estimates
ofindividualitemrepresentations,amodel closely related to the aver-
aging view®'%%,

The second of these models is the Precision Ensemble model,
according to which people maintain a point estimate of the mean,
which has a Gaussian rather than uniform uncertainty intervalaround
it. Rather than using a fixed interval for all subjects as we did for the
Noisy Point Estimate model, we calibrated this interval for each indi-
vidual by obtaining astandard deviation estimate from their working
memory data using the popular standard mixture model (inspired by
Zhang and Luck™). Therefore, this model also inherits afundamentally
different processing assumption about memory than the TCC ensem-
ble models, which is that there are true ‘guessing states’ in memory,
such that there is no evidence that can be used to report on memory.
To generate predictions for the Average Item Point Estimate model,
we used people’s working memory data to sample n point estimates
(measuredindegrees of error) for eachitemin the array and thenaver-
aged across these estimates. For instance, if people had to remember
six items on the visual working memory and ensemble tasks, we drew
(with replacement) six samples of their self-report data (converted
to error in degrees) on the visual working memory task and averaged
across these. This was repeated for each trial to generate the predicted
distribution of errors on the ensemble task.

Tosummarize, neither the Noise-Free Point Estimate nor the Item
Average Point Estimate model postulates probabilistic representations.
The Noisy Point Estimate and Precision Ensemble models postulate
partially probabilistic representations because there is an uncertainty
interval around the mean, but not a full probability distribution over
feature values®*. Note that we do not presume that these point-estimate
models capture all possible ways in which point-estimate or partially
probabilistic models could account for the data. However, in the
absence of other quantitative models in the literature that can apply
tosuchensemble perception tasks, we created models that spanned a
wide range of plausible assumptions regarding the nature of ensemble
extraction and the properties of ensemble representations. We also
address this pointin the Discussion.

The Precision Ensemble model wasimplemented by fitting a stand-
ard mixture model” to each individual’s visual working memory data
and using the standard deviation estimate from this model to compute
anuncertainty interval around the true average. The latter wasimple-
mented by sampling random samples of data (based on the number
of trials in the ensemble task), from a normal distribution with mean
zero and the standard deviation set to the standard deviation (inverse
of precision) estimate from the mixture model.

Recency TCC ensemble models

The Recency TCC model quantifies recency weights using an exponen-
tial function (without base e) over the serial position of each stimulus
in the sequence. The recency model for individual items is given by
the following equation:

Fivwu = argmax (f00),d'rate’ + Ongise ) &)

where all terms are identical to those given in equation (1), except a
second parameter, rate, which has the item position of itemjin the
exponent (wherej =1isthe most recentiteminthe sequence). Therate

parameter is afree parameter bounded between 0 and 1that captures
the effects of memory decay on memory, with smaller values (of the
parameter) indicating stronger decay effects and therefore relatively
higher weighting of more recentitemsin the ensemble (and relatively
better performance for themin the visualworking memory task). The
equations for the Perceptual and Post-perceptual Summationensemble
models are extended in a similar way, as shown below (equations (6)
and (7), respectively):

N
Fens = argmax ((Zf(x),-d’ratej) + o,wise), (6)
=
N .
Iens = argmax (Z (foo,d'rate’ + onoise)> . 7)
p=t

Note that the Automatic Averaging model is unchanged because
it postulates that people automatically extract asingle representation
of the mean without building up this representation from individual
items. We treat this model as being conceptually equivalent to a pro-
totype model that entails an equally weighted average’.

Modelfitting

All models were fit to visual working memory trial-level data (that is,
the full distribution of memory errors on each trial) in MATLAB 2021b
using maximum likelihood estimation by minimizing the negative log
likelihood. Minimization wasimplemented with the fmincon algorithm
inthe Optimization Toolbox as well as basic iterative search. The pre-
dictive accuracy of each model was measured using the PNLL. For the
main analyses, we substituted the best-fitting parameters from the
visual working memory task into equations for each of the ensemble
models to predict the data on the ensemble task, and we calculated the
PNLL using data from the ensemble task conditions.

Psychophysical similarity function and perceptual noise

The psychophysical similarity functions in our colour experiments
were estimated in prior work using a Likert task and verified using
a ‘triad’ task, a mainstream method for obtaining psychophysically
scaled similarity data®. Perceptual noise was measured with a percep-
tual matching task, also a mainstream task for quantifying perceptual
confusability of visual stimuli. In this task, the participants were shown
acolourand asked to matchittoone of 60 colours (6° apart) presented
simultaneously onthe computer screen. This task providesinsightinto
how perceptual noise affects the perceptual confusability of stimuli.
These perceptual matching datawere converted to a covariance matrix,
which was convolved with the psychophysical similarity function®.
We note that the resulting psychophysical similarity signal detection
modelis asimulation-based approximation of acorrelated noise signal
detection model”.

The same tasks were applied to the shape data. The shape wheel
was created and validated as a circular space in prior work™. We col-
lected Likert similarity data and perceptual confusion data for this
wheel using the same methods as used for the colour data.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data are publicly available at the following OSF link: https://osf.
io/mt29p/.

Code availability
The code is publicly available on OSF (https://osf.io/mt29p/).
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the visual working memory task for six items. The bottom row of panel A shows
results from the predictive analysis in which d’ estimates from the visual working
memory task were substituted into the TCC Perceptual Summation (blue),
Post-perceptual (red) and Automatic Averaging (green) models to predict the
ensemble data. The bottom panel (B) shows model predictions for a few example

Extended Data Fig.1| The Perceptual Summation model predicts ensemble
memory for color with a range manipulation. Graphical representation

of TCC models’ fit and prediction of datain Experiment 2. In this experiment
participants had to remember colors of simultaneously presented circles, and
the range of colors was manipulated in the ensemble task. The top row of panel
Ashows the fits of the TCC model for individual items to aggregate data from participants. Schurgin etal.”).

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-023-01602-z

Ensemble memory for shape with varied memory load
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(X =766; p< 1.0e-03 1.0e-10 1.0e-17 1.0e-13 1.0e-14 1.0e-14
s.e.m. = 8.8)
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Extended DataFig. 2| Comparison in predictive accuracy between
Perceptual Summation model and competing models of ensemble memory
for shape with the set size manipulation. The top panel shows violin plots for
the difference in predicted negative log likelihood scores between each of the six
alternative competing models (PNLLAIt) and the main Perceptual Summation
model (PNLLPerSum) for Experiment 3 (n = 50 participants). Lower values of
PNLL indicate higher predictive accuracy, therefore, PNLL difference scores
higher (or lower) than zero indicate support for the Perceptual Summation (or

acompeting) model. Inboth experiments, the vast majority of participants

are better predicted by the Perceptual Summation model thanany of the
alternatives. The bottom panel shows a table with a summary of descriptive and
inferential statistics from all comparisons in Experiment 3, including the mean
and standard error of the mean across participants. PNLL values were compared
witha paired two-tailed t-test, corrected for multiple comparisons and all
p-values were statistically significant (p < 0.001).
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Extended Data Fig. 3| The Perceptual Summation model predicts ensemble
memory for shape with a set size manipulation. Graphical representation of
the TCC models’ fit and prediction of data in Experiment 3. In this experiment
participants had to remember different shapes, and the number of shapes was
manipulated in the working memory and ensemble task. The top row of panel
A shows the fits of the TCC model for individual items to aggregate data from

the visual working memory task for six items and the second row of panel A
shows results from the predictive analysis in which d’ estimates from the visual
working memory task were substituted into the TCC Perceptual Summation
(blue), Post-perceptual (red) and Automatic Averaging (green) models to predict
the ensemble data. Panel B shows data and model predictions for a few example
participants.
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Extended Data Fig. 4| Comparisonin predictive accuracy between acompeting) model. In both experiments, the vast majority of participants
Perceptual Summation model and competing models of ensemble memory are better predicted by the Perceptual Summation model than any of the
for shape with the range manipulation. The top panel shows violin plots with alternatives. The bottom panel shows a table with a summary of descriptive and
the difference in predicted negative log likelihood scores between each of the six inferential statistics from all comparisons in Experiment 4, including the mean
alternative competing models (PNLLAIt) and the main Perceptual Summation and standard error of the mean across participants. PNLL values were compared
model (PNLLPerSum) for Experiment 4 (n = 50 participants). Lower values of witha paired two-tailed t-test, corrected for multiple comparisons and all
PNLL indicate higher predictive accuracy, therefore, PNLL difference scores p-values were statistically significant (p < 0.001).
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Extended DataFig. 5| The Perceptual Summation model predicts ensemble
memory for shape with arange manipulation. Graphical representation

of TCC model’s fitand prediction of data in Experiment 4. In this experiment
participants had to remember simultaneously presented shapes, and the range
of shapes was manipulated in the ensemble task. The top row of panel A shows
thefits of the TCC model for individual items to aggregate data from the visual

working memory task for six items, and the second row of panel A shows results
from the predictive analysis in which d’ estimates from the visual working
memory task were substituted into the TCC Perceptual Summation (blue),
Post-perceptual (red) and Automatic Averaging (green) models to predict the
ensemble data. Panel B shows data and model predictions for a few example
participants.
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Ensemble memory for sequentially presented coloured objects
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Extended Data Fig. 6 | Comparison in predictive accuracy between
Sequential Perceptual Summation model and competing models of
ensemble memory for sequentially presented stimuli. The top panel

shows violin plots of the difference in predicted negative log likelihood

scores between each of the eight alternative competing models (PNLLAIt)

and the main Sequential Perceptual Summation model (PNLLPerSum) (n =50
participants). Lower values of PNLL indicate higher predictive accuracy,
therefore, PNLL difference scores higher (or lower) than zero indicate support
for the Sequential Perceptual Summation (or acompeting) model. The vast
majority of participants are better predicted by the Sequential Perceptual
Summation model than any of the alternatives. Note that the baseline here is
the Sequential Perceptual Summation model that relies on fitting a decay rate.
Theindependent d’ Perceptual Summation model, the last model above, is the

same model but without this parametric assumption about how d’ changes
across the items in the working memory task. This independent model is instead
oneinwhich we used separate d’ estimates to quantify familiarity of items as
afunction of serial position, rather than a single d’ and rate parameter. This
modelis marked with an * because itis also a version of the Sequential Perceptual
Summation model and so shows comparable predictive accuracy to the main
Sequential Perceptual Summation model we use, as expected. The bottom panel
shows a table with asummary of descriptive and inferential statistics from all
comparisons in Experiment 5, including the mean and standard error of the mean
across participants. PNLL values were compared with a paired two-tailed t-test,
corrected for multiple comparisons and for all comparisons between competing
models p-values were statistically significant (p < 0.001).
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Extended Data Fig. 7 | The Perceptual Summation model predicts ensemble

memory for sequentially presented stimuli. Summary of results from
Experiment 5, in which participants had to remember colors of sequentially
presented real-world objects. The top row of panel A shows the fits of the

Sequential TCC model to individual data and the second row of panel A shows

the TCC Sequential Perceptual Summation (blue), Post-perceptual (red) and

Automatic Averaging (green) models’ predictions of the ensemble data in two
conditions. In the clockwise (counterclockwise) condition the most recently
shown items were from the clockwise (counterclockwise) direction from the
mean color, producing a clockwise (counterclockwise) bias. Panel B shows data
and model predictions for a few example participants.
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Behavioural & social sciences study design
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Study description All studies were quantitative experimental studies. Participants were shown colored circles (Experiments 1-2), shapes (Experiments
3-4), or colored real world objects (Experiment 5), and instructed to remember them over a short retention interval. After the
retention interval participants were probed on their memory with continuous report wheel.

Research sample University of California, San Diego students, ages 18+, with normal or corrected-to-normal vision, a representative sample of US
adults. Data from undergraduate students are typically used in lab visual cognition tasks (Brady & Alvarez, 2011; Brady & Tenenbaum,
2013).

Sampling strategy All sample sizes were decided a priori. All studies used convenience samples of undergraduates from the University of California, San

Diego. In each experiment, we collected data until our final sample size was n=50, which affords 99% power for a medium effect size
(dz=.5) for a paired t-test at =.05. We did not analyze data of participants who failed to complete the study.

Data collection All experiments were deployed online via the University of California, San Diego SONA system. Participants computer screens showed
stimuli, and responses were collected via keyboard or mouse. Manipulations were within participants and participants were run
online without direct experimenter supervision, therefore, experimenter blinding does not apply.

Timing Allindividual studies were collected between September 2019-September 2021.

Data exclusions Our exclusion criteria were pre-established. We excluded any participants < 1.5 standard deviations below the mean of the overall d'
across participants in any of the conditions in the VWM task in Experiments 1-4, and the overall d' in Experiment 5. This led to the
following number of exclusions in each of the experiments. We collected data until our sample size reached a pre-determined
sample size of n=50 in each Experiment. Publicly available data includes data from all participants (included and excluded from the
main analysis).

Experiment 1: Nine participants; Experiment 2: Five participants; Experiment 3: Six participants; Experiment 4: Zero participants;
Experiment 5: One participants.

Non-participation No participants dropped out or declined participation.

Randomization Every study is within-subject so no randomization of participants to groups was required.

Reporting for specific materials, systems and methods
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Human research participants

Policy information about studies involving human research participants

Population characteristics Participants were undergraduates from University of California, San Diego. Covariate relevant information: all participants at
UCSD reported normal color vision and were between the ages of 18-35 years old.
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Recruitment Participants were recruited via the Sona Systems online portal, where psychology undergraduate students can participate in
studies for extra credit. We are not aware of any self-selection biases that could impact the study results.

Ethics oversight Studies were approved by the UCSD IRB.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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